Ética y Responsabilidad Social en la Implementación de Sistemas de Inteligencia Artificial en la Administración

Autores/as

DOI:

https://doi.org/10.5281/zenodo.13308314

Palabras clave:

Ética, responsabilidad social, inteligencia artificial, administración empresarial

Resumen

Esta revisión sistemática tuvo como objetivo analizar los dilemas éticos y las implicaciones de la responsabilidad social en la adopción de la inteligencia artificial (IA) en la administración empresarial. Se realizó una búsqueda exhaustiva en las bases de datos Scopus, Web of Science y EBSCOhost, identificando estudios publicados entre 2018 y 2024 que cumplían con los criterios de inclusión. La síntesis narrativa de los hallazgos reveló preocupaciones clave en torno a la equidad en la toma de decisiones automatizada, la necesidad de transparencia y explicabilidad de los algoritmos, la definición de la responsabilidad por las acciones de la IA, el impacto en el empleo y las habilidades de los trabajadores, y la protección de la privacidad y los datos. La revisión concluye que la integración ética de la IA en la administración requiere la adopción de directrices éticas claras, marcos de gobernanza robustos y un enfoque proactivo por parte de las empresas para mitigar los riesgos éticos y promover un entorno de trabajo justo, transparente y sostenible.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, K., Alzaidi, M., Al-Fraihat, D., & Elamir, A. M. (2023). Artificial intelligence: benefits, application, ethical issues, and organizational responses. En Intelligent Sustainable Systems: selected Papers of WorldS4 2022, volume 1 (pp. 685-702). Springer Nature Singapore. https://link.springer.com/chapter/10.1007/978-981-19-7660-5_62

Benefo, E. O., Tingler, A., White, M., Cover, J., Torres, L., Broussard, C., ... & Patra, D. (2022). Ethical, legal, social, and economic (ELSE) implications of artificial intelligence at a global level: a scientometrics approach. AI and Ethics, 2(4), 667-682. https://link.springer.com/article/10.1007/s43681-021-00124-6

Tursunbayeva, A. (2019). Human resource technology disruptions and their implications for human resources management in healthcare organizations. BMC health services research, 19(1), 268. https://link.springer.com/article/10.1186/s12913-019-4068-3

Brendel, A. B., Mirbabaie, M., Lembcke, T. B., & Hofeditz, L. (2021). Ethical management of artificial intelligence. Sustainability, 13(4), 1974. https://www.mdpi.com/2071-1050/13/4/1974

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company. https://books.google.es/books?hl=es&lr=&id=WiKwAgAAQBAJ&oi=fnd&pg=PA1&dq=Brynjolfsson,+E.,+%26+McAfee,+A.+(2014).+The+second+machine+age:+Work,+progress,+and+prosperity+in+a+time+of+brilliant+technologies.+W.+W.+Norton+%26+Company.&ots=4-VoWh-tgi&sig=gQOxZmtQ_K7o8bfRF92Ou3tolSQ

Carrillo, M. R. (2020). Artificial intelligence: From ethics to law. Telecommunications Policy, 44(6), 101937. https://www.sciencedirect.com/science/article/pii/S030859612030029X

Carter, D. (2020). Regulation and ethics in artificial intelligence and machine learning technologies: Where are we now? Who is responsible? Can the information professional play a role? Business Information Review, 37(2), 60-68. https://journals.sagepub.com/doi/abs/10.1177/0266382120923962

Davenport, T. H., & Kirby, J. (2016). Only humans need apply: Winners and losers in the age of smart machines. Harper Business. https://leadersexcellence.com/wp-content/uploads/dlm_uploads/2016/08/Davenport-Leaders-Excellence-presentation.pdf

Djeffal, C. (2020). Artificial intelligence and public governance: normative guidelines for artificial intelligence in government and public administration. Regulating Artificial Intelligence, 277-293. https://link.springer.com/chapter/10.1007/978-3-030-32361-5_12

Elliott, K., Price, R., Shaw, P., Spiliotopoulos, T., Ng, M., Coopamootoo, K., & Van Moorsel, A. (2021). Towards an equitable digital society: artificial intelligence (AI) and corporate digital responsibility (CDR). Society, 58(3), 179-188. https://link.springer.com/article/10.1007/s12115-021-00594-8

Floridi, L. (2019). The ethics of information. En F. van der Hoek (Ed.), The Oxford Handbook of Philosophy of Information (pp. 443-462). Oxford University Press. https://books.google.es/books?hl=es&lr=&id=_XHcAAAAQBAJ&oi=fnd&pg=PP1&dq=Floridi,+L.+(2019).+The+ethics+of+information.+En+F.+van+der+Hoek+(Ed.),+The+Oxford+Handbook+of+Philosophy+of+Information+(pp.+443-462).+Oxford+University+Press.&ots=f_hD5_RvWX&sig=VGVY9MjV_G54RXJLEfqxQA3N8ZI

Fountaine, T., McCarthy, B., & Saleh, T. (2021). Building the AI-powered organization. Harvard Business Review, 99(4), 62-73. https://wuyuansheng.com/doc/Databricks-AI-Powered-Org__Article-Licensing-July21-1.pdf

Greenhalgh, T., & Peacock, R. (2005). Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. BMJ, 331(7524), 1065–1069. https://www.bmj.com/content/331/7524/1064.short

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., ... & Schünemann, H. J. (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336(7650), 924–926. https://www.bmj.com/content/336/7650/924.short

Harlow, H. (2018, Septiembre). Ethical concerns of artificial intelligence, big data and data analytics. En European Conference on Knowledge Management (pp. 316-323). Academic Conferences International Limited. https://search.proquest.com/openview/56146799514cd6f3c4e92e82079fb128/1?pq-origsite=gscholar&cbl=1796412

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., & Wallach, H. (2019). Improving fairness in machine learning systems: What do industry practitioners need? En Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-16). https://dl.acm.org/doi/abs/10.1145/3290605.3300830

Kerr, A., Barry, M., & Kelleher, J. D. (2020). Expectations of artificial intelligence and the performativity of ethics: Implications for communication governance. Big Data & Society, 7(1), 2053951720915939. https://journals.sagepub.com/doi/abs/10.1177/2053951720915939

Kieslich, K., Keller, B., & Starke, C. (2022). Artificial intelligence ethics by design. Evaluating public perception on the importance of ethical design principles of artificial intelligence. Big Data & Society, 9(1), 20539517221092956. https://journals.sagepub.com/doi/abs/10.1177/20539517221092956

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2019). The ethics of algorithms: Mapping the debate. Big Data & Society, 6(1), 2053951719839315. https://journals.sagepub.com/doi/abs/10.1177/2053951716679679

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://www.acpjournals.org/doi/abs/10.7326/0003-4819-151-4-200908180-00135

?ikadimovs, O., & V?vere, V. (2024, junio). THE USE OF GENERATIVE ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION: UNIVERSITY SOCIAL RESPONSIBILITY AND STAKEHOLDERS’PERCEPTIONS. En ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference (Vol. 2, pp. 226-231). https://journals.ru.lv/index.php/ETR/article/view/8015

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://www.science.org/doi/abs/10.1126/science.aax2342

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Blackwell Publishing. https://books.google.es/books?hl=es&lr=&id=ZwZ1_xU3E80C&oi=fnd&pg=PR5&dq=Petticrew,+M.,+%26+Roberts,+H.+(2006).+Systematic+reviews+in+the+social+sciences:+A+practical+guide.+Blackwell+Publishing.&ots=w_Q_xQIULt&sig=wzaboMWCLsVs4M4w3suRp70mdpM

Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., ... & Duffy, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed8b23836338f6fdea0cc55e161b0fc5805f9e27

Rosemann, A., & Zhang, X. (2022). Exploring the social, ethical, legal, and responsibility dimensions of artificial intelligence for health-a new column in Intelligent Medicine. Intelligent Medicine, 2(02), 103-109. https://mednexus.org/doi/abs/10.1016/j.imed.2021.12.002

Santoni de Sio, F., & Mecacci, G. (2021). Four responsibility gaps with artificial intelligence: Why they matter and how to address them. Philosophy & Technology, 34(4), 1057-1084. https://link.springer.com/article/10.1007/s13347-021-00450-x

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42. https://journals.sagepub.com/doi/abs/10.1177/0008125619867910

Weber-Lewerenz, B. (2021). Corporate digital responsibility (CDR) in construction engineering—ethical guidelines for the application of digital transformation and artificial intelligence (AI) in user practice. SN Applied Sciences, 3, 1-25. https://link.springer.com/article/10.1007/s42452-021-04776-1

Zaman, B. U. (2024). The weighty responsibility of creating ai navigating control and ethics. https://www.preprints.org/manuscript/202404.1900

Descargas

Publicado

2024-02-29

Cómo citar

Acevedo Torres, S. I. . (2024). Ética y Responsabilidad Social en la Implementación de Sistemas de Inteligencia Artificial en la Administración. Business Innova Sciences, 5(1), 35-57. https://doi.org/10.5281/zenodo.13308314