Automatización de Procesos y Eficiencia Operativa mediante Inteligencia Artificial en la Administración

Autores/as

DOI:

https://doi.org/10.5281/zenodo.13308399

Palabras clave:

Inteligencia artificial, automatización de procesos, eficiencia operativa

Resumen

Esta revisión sistemática tuvo como objetivo analizar el impacto de la inteligencia artificial (IA) en la eficiencia operativa y la automatización de procesos dentro del área profesional de la administración. Se realizó una búsqueda exhaustiva en las bases de datos SCOPUS, Web of Science y Google Scholar, identificando 17 estudios relevantes publicados entre 2019 y 2024 que cumplieron con los criterios de inclusión preestablecidos. Los estudios seleccionados abarcaron diversas industrias, incluyendo manufactura, salud, finanzas, tecnología y sector público, y utilizaron una variedad de metodologías, como estudios de caso, revisiones de literatura, estudios de campo y análisis cuantitativos. Los resultados revelaron que la IA ofrece un gran potencial para mejorar la eficiencia operativa, optimizar la toma de decisiones, reducir costos y transformar la gestión de recursos humanos. Sin embargo, la implementación de IA también presenta desafíos como la complejidad técnica, la falta de habilidades y la resistencia al cambio, que requieren una planificación estratégica y una gestión del cambio efectiva. Se concluye que la IA está redefiniendo el panorama de la administración, ofreciendo oportunidades sin precedentes para la innovación y la creación de valor. Las empresas que adopten estas tecnologías de forma estratégica y responsable estarán mejor posicionadas para competir en un entorno empresarial cada vez más dinámico y complejo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abildtrup, A. (2024). The rise of robotic process automation in the banking sector: streamlining operations and improving efficiency. https://anapub.co.ke/journals/jcns/jcns_pdf/2024/jcns_volume_4-issue_1/JCNS202404004.pdf

Adorno, O. D. A. (2020). Business process changes on the implementation of artificial intelligence (Doctoral dissertation, Universidade de São Paulo). https://www.teses.usp.br/teses/disponiveis/12/12139/tde-08042021-011316/en.php

Bu, S., Jeong, U. A., & Koh, J. (2022). Robotic process automation: A new enabler for digital transformation and operational excellence. Business Communication Research and Practice, 5(1), 29-35. https://www.e-bcrp.org/archive/view_article?pid=bcrp-5-1-29

Chakravarthi, M. K., Kumar, Y. P., & Reddy, G. P. (2024, April). Potential Technological Advancements in the Future of Process Control and Automation. In 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream) (pp. 1-6). IEEE. https://ieeexplore.ieee.org/abstract/document/10542581/

Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. J. H. W. (2019). Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley.

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://blockqai.com/wp-content/uploads/2021/01/analytics-hbr-ai-for-the-real-world.pdf

Devapatla, H., & Katti, S. R. (2023). Streamlining Administrative Processes in Healthcare through Robotic Process Automation: A Comprehensive Examination of RPA's Impact on Billing, Scheduling, and Claims Processing. African Journal of Artificial Intelligence and Sustainable Development, 3(2), 14-27. https://africansciencegroup.com/index.php/AJAISD/article/view/15

Ekuma, K. (2024). Artificial Intelligence and Automation in Human Resource Development: A Systematic Review. Human Resource Development Review, 23(2), 199-229. https://journals.sagepub.com/doi/abs/10.1177/15344843231224009

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Luetge, C. (2018). AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689-707. https://link.springer.com/article/10.1007/S11023-018-9482-5

Gavade, D. (2023). AI-driven process automation in manufacturing business administration: efficiency and cost-efficiency analysis. https://digital-library.theiet.org/content/conferences/10.1049/icp.2024.1038

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health information and libraries journal, 26(2), 91-108. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-1842.2009.00848.x

Hussein, M. I. M., & Sharif, S. M. (2024). The role of intelligent process automation in raising production efficiency: A field study in the Tasluja cement factory. Review of Socio-Economic Perspectives, 9(1), 149-157. https://reviewsep.com/index.php/rsep/article/view/188

Karjalainen, J. (2022). Developing business process automation strategy: case: Finnish financial industry organization. https://lutpub.lut.fi/handle/10024/164222

Lahoti, Y. (2023). Artificial Intelligence Strategies for Business Process Optimization. Journal for ReAttach Therapy and Developmental Diversities, 6(1), 1643-1654. http://jrtdd.com/index.php/journal/article/view/2841

Lo, W., Yang, C. M., Zhang, Q., & Li, M. (2024). Increased Productivity and Reduced Waste with Robotic Process Automation and Generative AI-Powered IoE Services. Journal of Web Engineering, 23(1), 53-87. https://ieeexplore.ieee.org/abstract/document/10488437/

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://www.acpjournals.org/doi/abs/10.7326/0003-4819-151-4-200908180-00135

Ogunsakin, O. L., & Anwansedo, S. (2024). Leveraging AI for Healthcare Administration: Streamlining Operations and Reducing Costs. https://www.irejournals.com/formatedpaper/1705709.pdf

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic reviews, 5(1), 210. https://link.springer.com/article/10.1186/s13643-016-0384-4

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Higgins, J. P., Hoffman, T. C., Mulrow, C. D., ... & The PRISMA 2020 statement. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic reviews, 10(1), 1-11. https://www.bmj.com/content/372/bmj.n71.short

Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Blackwell Publishing. https://books.google.es/books?hl=es&lr=&id=ZwZ1_xU3E80C&oi=fnd&pg=PR5&dq=Petticrew,+M.,+%26+Roberts,+H.+(2006).+Systematic+reviews+in+the+social+sciences:+A+practical+guide.+Blackwell+Publishing.&ots=w_Q_xUNRLo&sig=ON_Vpwb0xj5-tJ4GLxym8ahP7HU

Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., ... & Duffy, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme, (version 1). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed8b23836338f6fdea0cc55e161b0fc5805f9e27

Potter, K., & Stilinski, D. (2024). Artificial Intelligence's Potential to Simplify Government Procedures and Promote Better Economic Activity (No. 13787). EasyChair. https://easychair.org/publications/preprint_download/wh8w

Prabhod, K. J. (2024). The Role of Artificial Intelligence in Reducing Healthcare Costs and Improving Operational Efficiency. Quarterly Journal of Emerging Technologies and Innovations, 9(2), 47-59. https://vectoral.org/index.php/QJETI/article/view/111

Pramod, D. (2022). Robotic process automation for industry: adoption status, benefits, challenges and research agenda. Benchmarking: an international journal, 29(5), 1562-1586. https://www.emerald.com/insight/content/doi/10.1108/BIJ-01-2021-0033/full/html

PUICA, E. (2022). IT Solutions in Supply Chain Management and Their Efficiency. https://ibimapublishing.com/articles/JSSD/2022/785575/785575-1.pdf

Samokhvalov, I. (2024). Transforming Management Reporting with Intelligent Process Automation (IPA): Enhancing Business Analytics, Forecasting, and Decision-Making in Organizations. https://www.theseus.fi/handle/10024/860490

Selvam, P., Dornadula, V. H. R., Madhur, P., & Kotehal, P. U. (2024). Application of Artificial Intelligence in Business Operations and its impact on Organisational Performance: An Empirical Study. https://www.afjbs.com/uploads/paper/8bc7aae8f1737ff48a82944bad810e43.pdf

Whiting, P., Savovi?, J., Higgins, J. P., Caldwell, D. M., Reeves, B. C., Shea, B., ... & Sterne, J. A. (2016). ROBIS: a new tool to assess risk of bias in systematic reviews was developed. Journal of clinical epidemiology, 69, 225-234. https://www.sciencedirect.com/science/article/pii/S089543561500308X

Wong, D. (2010). The wall street journal guide to information graphics: The dos and don'ts of presenting data, facts and figures. W. W. Norton & Company. https://books.google.es/books?hl=es&lr=&id=Q4a3EAAAQBAJ&oi=fnd&pg=PA19&dq=Wong,+D.+(2010).+The+wall+street+journal+guide+to+information+graphics:+The+dos+and+don%27ts+of+presenting+data,+facts+and+figures.+W.+W.+Norton+%26+Company.+&ots=Y2J_TAkaV1&sig=9O64X07Mw3jwCm2U8L_M5hSnvgM

Descargas

Publicado

2024-08-13

Cómo citar

Pérez Marroquín, R. D. . (2024). Automatización de Procesos y Eficiencia Operativa mediante Inteligencia Artificial en la Administración. Business Innova Sciences, 5(1), 85-113. https://doi.org/10.5281/zenodo.13308399